Testing the performance of three nonlinear methods of time series analysis for prediction and downscaling of European daily temperatures
نویسنده
چکیده
We investigated the usability of the method of local linear models (LLM), multilayer perceptron neural network (MLP NN) and radial basis function neural network (RBF NN) for the construction of temporal and spatial transfer functions between different meteorological quantities, and compared the obtained results both mutually and to the results of multiple linear regression (MLR). The tested methods were applied for the short-term prediction of daily mean temperatures and for the downscaling of NCEP/NCAR reanalysis data, using series of daily mean, minimum and maximum temperatures from 25 European stations as predictands. None of the tested nonlinear methods was recognized to be distinctly superior to the others, but all nonlinear techniques proved to be better than linear regression in the majority of the cases. It is also discussed that the most frequently used nonlinear method, the MLP neural network, may not be the best choice for processing the climatic time series – LLM method or RBF NNs can offer a comparable or slightly better performance and they do not suffer from some of the practical disadvantages of MLPs. Aside from comparing the performance of different methods, we paid attention to geographical and seasonal variations of the results. The forecasting results showed that the nonlinear character of relations between climate variables is well apparent over most of Europe, in contrast to rather weak nonlinearity in the Mediterranean and North Africa. No clear large-scale geographical structure of nonlinearity was identified in the case of downscaling. Nonlinearity also seems to be noticeably stronger in winter than in summer in most locations, for both forecasting and downscaling. Correspondence to: J. Miksovsky ([email protected])
منابع مشابه
Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملA Nonlinear Model of Economic Data Related to the German Automobile Industry
Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...
متن کاملComparison of LARS-WG and SDSM Downscaling Models for Prediction Temperature and Precipitation Changes under RCP Scenarios
Various methods developed to convert large-scale data to regional climatic data. In few studies , the results of these methods have been statistically compared. The main purpose of this study was to compare SDSM and LARS-WG models for Downscaling output data of CANE-SM2 and HADGEM2-ES general circulation models under RCP2.6, RCP4.5 and RCP8.5 scenarios. For this study, precipitation, minimum an...
متن کاملPrediction of Climate Change in Western of Iran using Downscaling of HadCM3 Model under Different Scenarios
Abstract Considering that water resources are at risk from climate change, the study of temperature and precipitation changes in the coming years can lead to droughts such as droughts, sudden floods, high evaporation and environmental degradation. To this end, global climate models (GCMs) are designed to assess climate change. The outputs of these models have low spatial accuracy. In order ...
متن کامل